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Engineering Fano resonances in discrete arrays
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We study transmission properties of discrete arrays composed of a linear waveguide coupled to a system of
N side defect states. This simple system can be used to model discrete networks of coupled defect modes in
photonic crystals, complex waveguide arrays in two-dimensional nonlinear lattices, and ring-resonator struc-
tures. We demonstrate the basic principles of the resonant scattering management through engineering Fano

resonances and find exact results for the wave transmission coefficient. We reveal conditions for perfect
reflections and transmissions due to either destructive or constructive interferences, and associate them with
Fano resonances, also demonstrating how these resonances can be tuned by nonlinear defects.
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I. INTRODUCTION

During the past decade we observe a growing interest in
theoretical and experimental studies of different types of
resonant wave phenomena associated with either direct or
indirect manifestation of the classical Fano resonance [1] in
nanoscale devices with side-coupled waveguiding structures
[2-10]. These structures can be presented as one or more
waveguides in which forward and backward propagating
waves are indirectly coupled to each other via one or more
mediating resonant cavities or defect states. The well-known
systems for realizing these structures are based on a straight
photonic-crystal waveguide with a number of side defect
modes [11], microring resonator structures in which two
channel waveguides are side-coupled to microring resonators
[12] or variety of bend photonic-crystal waveguides [13].
Similar structures can be created in the discrete networks
extensively discussed for routing and switching of discrete
optical solitons [14].

In all such structures, the forward and backward propa-
gating modes within the waveguide are coupled via the de-
fects; the transmission becomes highly sensitive to the reso-
nant properties of the defect states, and it is usually
associated with the so-called Fano resonances. Indeed, the
underlying physics of the Fano resonances finds its origin in
wave interference which occurs in the systems characterized
by one or several discrete energy states that interact with the
continuum spectrum. In the corresponding transmission de-
pendencies, the interference effect leads to either perfect
transmission or perfect reflection, producing a sharp asym-
metric response. This kind of the wave resonance is also
common in different interferometer devices such as the
Aharonov-Bohm interferometer [15] and the Mach-Zehnder
interferometer [16].

One of the simplest models that can be used to study the
Fano resonances in discrete networks as well as the resonant
coupling and interaction between discrete degrees of free-
dom and a continuum spectrum is the so-called Fano-
Anderson model [17]. It describes a linear array of coupled
elements (e.g., effective particles or defect modes) with the
nearest-neighbor interaction coupled to one or several defect
states through a local coupling. Such a simple discrete model
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allows to describe the basic physics of the Fano resonances
in a rather simple way including the nonlinear and bistability
regimes [18]. In particular, this model allows to derive ana-
lytical results for the wave transmission and reflection, and it
may serve as a guideline for the analysis of more compli-
cated physical models associated with the Fano resonance.

In this paper, we study the transmission properties of dis-
crete networks composed of linear arrays of interacting ele-
ments coupled to systems of N side defects described by the
generalized discrete Fano-Anderson model. This model al-
lows us to find exact solutions for the wave transmission
coefficient and the conditions for the perfect reflections and
transmissions due to either destructive or constructive inter-
ference. Using these results, we demonstrate and explain the
basic principles of the resonant scattering under the condi-
tion of the Fano resonances, and also suggest the concept of
the Fano resonance engineering. In particular, for several dif-
ferent examples we demonstrate that in the presence of a
defect the destructive wave interference remains always
resonant, while the constructive wave interference could be
or could not be resonant. As a result, this brings us to the
general conclusion that the main feature of the Fano reso-
nance is the resonant reflection but not transmission. We also
demonstrate how the Fano resonances can be tuned by intro-
ducing nonlinear defects into a discrete network. The results
are quite general and can be applied to different physical
systems such as quantum dots or photonic crystal
waveguides, for example.

The paper is organized as follows. In Sec. II we introduce
our discrete model describing a linear chain with N defects
and describe the main features of the linear wave transmis-
sion. In particular, we define the conditions for both resonant
transmission and reflection due to the interaction with a side
chain of N defects coupled locally to the main array. In Sec.
IIT we demonstrate how the Fano resonance in a linear sys-
tem can be tuned by introducing nonlinear defects. Finally,
Sec. IV concludes the paper.

II. LINEAR TRANSMISSION

We consider the generalized linear Fano-Anderson model
that describes an infinite array of interacting elements (e.g.,
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FIG. 1. (Color online) Schematic view of the generalized Fano-
Anderson model with a locally coupled N-defect chain without (a)
or with (b) additional defects in the main array.

effective particles) coupled locally to a complex side defect
(the so-called Fano defect) characterized by more than one
degrees of freedom, as shown schematically in a specific
example of Fig. 1(a). From the viewpoint of the Fano reso-
nance, each degree of freedom of the defect chain contributes
with an additional local path for the wave scattering, or, in
other words, generates an additional discrete state. Each dis-
crete state leads to the possibility of additional interference
condition, so that the presence of several defects may show a
variety of interference phenomena. In order to study these
effects in details, both analytically and numerically, we take
one of the simplest implementations of the N-mode Fano
defect as a finite chain of defects with the nearest-neighbor
coupling between them; see Fig. 1(a) [19].

We then provide with specific example from the theory of
photonic crystal (PC) waveguides in order to show how this
model can be implemented to real physical system.

A. Model for N-defect Fano resonances

We start our study from the analysis of the linear trans-
mission when the Hamiltonian of the model can be written in
the following form

HL=HO+HF+HOF7 (1)
where
Hy=C2 (¢, +c.c),
n
N-1
HF: E (Em|(Pm|2 + Vm‘Pm(P:nH + C-C-) + EN| PN 2’
m=1

HOF = Vo(z)()QDI +cC.C., (2)

and the asterisk stands for the complex conjugation. The
model with the Hamiltonian (1), (2) describes the interaction
of two subsystems coupled locally to each other at a single
site [see Fig. 1(a)]. One subsystem is an infinite homoge-
neous array of equivalent elements described by the wave
functions ¢, with the strength of the nearest-neighbor inter-
action characterized by the parameter C. In this array, waves
propagate freely and they are characterized by the dispersion
relation w,=2C cos g. The other subsystem is a finite inho-
mogeneous chain of N elements described by the wave func-
tions ¢, which acts as a complex localized defect attached to
the main array, with E,, being the energy associated with the
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mth element. We assume that the defect sites are coupled
through the nearest-neighbor interaction with the strength
Vipe

Depending on the ratio of the coupling coefficients C and
V, this model can be directly applied to different physical
systems. For example, in quantum dots C<V, [2-4], in
photonic-crystal waveguides coupling coefficients C and V|,
are of the same order [5-7,13], for scattering by time-
periodic and spatially localized states (discrete breathers)
even the case C<V, might be possible [20]. Therefore, we
will not concentrate on a particular type of the physical sys-
tem and will present generic results.

From the Hamiltonian (1) and (2) we can derive the equa-
tions of motion in the frequency domain,

0d,=C(Pyi + dpi1) + Vo1 6,0,
o =E @+ Vody+ V¢,

0o, =E,0,+ Vg + V,03,

wey=Eyoy+ Vy_ 1051, (3)

and obtain a simple recurrence relation for ¢,

Vioi-1p(w)
Py = =g (4)
pl+l(w)
where
pi(w) = detf ol - H}] (5)

is a characteristic polynomial of the subsystem of / sites only
(calculated from the site N—[+1 to the site N)

EN VN—l O 0
Vo1 Enoy Ve 0
HL = N 1 Ener Vi : ©)
0 - 0 Vi Eyin

and 7 is the identity matrix [ X [.

The recurrence relation (4) is valid for /=0, ... ,N-2 and,
for simplicity, we assume that py(w)=1. By writing the re-
lation (4) for ¢,,

Vipyo(w)
2= 1
py-1(®)

and substituting it into the second equation of (3), we extend
the recurrence relation (4) to the following form

_ Vopy-1(w)

py(®) % @)

@1

which allows us to eliminate additional degrees of freedom
from the system (3) and obtain a system of equations for
describing the wave propagation in the main array only
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FIG. 2. (Color online) Schematic view of two photonic crystal
waveguide configurations with side-coupled defects. The
waveguides and defects are constructed by removing some rods in a
periodic structure. These two examples show that coupling between
defect rods in straight waveguide and coupling to side-coupled de-
fects can be easily tuned.

py-1(w)

w¢n = C(¢n—l + ¢n+l) +
py(®)

Vidoduo  (8)
with an effective localized defect. This defect acts as a scat-
tering potential whose strength depends on the frequency of
the incoming wave (8). The function p;,(w) vanishes when the
frequency w coincides with one of the eigenfrequencies of
the corresponding subsystem of [ sites described by Eq. (6).
Therefore, our first important result is that, in general, there
exist N—1 frequencies where the strength of the defect van-
ishes and the induced scattering potential becomes transpar-
ent, and N frequencies where the strength of the defect will
become infinite making the scattering potential opaque.

B. Examples from the photonic crystal theory

One of the important physical systems, where the model
described above can be applied, is photonic crystal
waveguides. Some examples are shown in Fig. 2.

Photonic crystals are artificial dielectric structures with a
periodic modulation in the refractive index that create re-
gions of forbidden frequencies known as photonic band gaps
[21]. Due to the small period of the modulation of the refrac-
tive index =500 nm, photonic crystals are known as nanode-
vices, which allow to guide light by varying the waveguide
configuration. These waveguides are usually constructed by
introducing defects in a periodic structure.

Below we demonstrate that transmission of electromag-
netic waves through photonic crystal waveguides can be de-
scribed by a simple discrete model, which is similar to Eq.
(3). We consider a two-dimensional photonic crystal created
by a square lattice (with the period a) of dielectric rods in air.
We study in-plane light propagation in this photonic lattice
described by the electric field E(x,t)=exp(—iwt)E(x| w) po-
larized parallel to the rods, and reduce the Maxwell’s equa-
tions to the scalar eigenvalue problem

w

2
{V2+<;) e(x)}E(x|w)=O. (9)

A waveguide is created by replacing some of the lattice
rods by the defect rods with the radius r, or simply by
removing some rods of the lattice. To describe the structure
with defects, we decompose the permittivity function €(x)
into a sum of the periodic part and the defect-induced con-
tribution, €(x)=¢€,(x)+ e(x), and rewrite Eq. (9) in the inte-
gral form [22],
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where G(x,y|w) is the standard Green’s function. If the ra-
dius of the defect rod r, is sufficiently small, the electric field
E(x|w) inside the rod is almost constant, and the integral
(10) can be easily evaluated. This allows us to derive a set of
discrete equations for the electric field

) Se(y)E(y|w),  (10)

En,m = 2 Jn—k,m—l(w) 5€k,lEk,l9 (1 1)
k1l

where

2
Jn,m(w) = (%) f dzy G(mem + Y|w) (]2)

d

are the frequency-dependent effective coupling coefficients
and

5€n,m = €,.m ~ €rod> (13)

are the defect-induced changes of the lattice dielectric func-
tion, where ¢, ,, is the dielectric constant of the defect rod
located at the site (n,m).

In general, the effective coupling coefficients |J,, ,(w)| de-
cay slow in space [23]. This slow decay introduces effective
long-range interaction between different sites of the wave-
guide. In reality, we define a finite distance L of this interac-
tion by assuming that all coupling coefficients with the num-
bers |n—k|>L and |m—I|>L vanish. As demonstrated in
Ref. [23], the case L=6 gives already an excellent agreement
with the results of the finite-difference time-domain numeri-
cal simulations. But for many cases even the nearest-
neighbor interaction approximation (L=1), shows a good
agreement with exact results. In the case of side-coupled
defects to the straight waveguide [see Fig. 2(a)], the set of
equations (11) reduces exactly to (8). This drastic simplifica-
tion of the original problem allows us to study the system
analytically and analyze many interesting effects such as
resonant light scattering. By taking into account a larger
number of interaction terms will just renormalize the effect.

C. Transmission coefficient

To calculate the transmission coefficient for the system
(8), we use the transfer matrix connecting the left and right

boundaries [24]
Ll
DL b

where 2L is a characteristical width of the scattering poten-
tial.

By using the scattering boundary conditions
{Ioeiq" + re7ian,

ign
te'?",

n<-1L,
n>1L,

n

(15)

the transmission coefficient T=|r?|/|I;|* can be presented in
the following form:
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4sin® g

T= - -
— 2"
|M11€ [q+M12—M21—M22€lq|

(16)

For the &-like scattering potential (8) the transfer matrix (14)
takes a very simple form

a —1
Mp= s 17
F (1 0 ) (17)
where
V3 py-
azzcosq__oplv—l(w‘ll (18)
C pN(wq)

and it defines the following transmission coefficient

T=—" (19)

2 b
aq+1

where

_ ¢ _qu( wg)
! V%PN—1(wq) '

From the result (19), (20), it follows that, in general, there
exist N—1 frequencies for the perfect transmissions (when
a,===) and N frequencies for the perfect reflections (when
@,=0). Due to the specific structure of our system, the per-
fect transmissions are surrounded by the perfect reflections.
The transmission coefficient (19), (20) is written the form
similar to that of the Fano formula, and it allows us to asso-
ciate the resonances with the Fano resonance.

The case of local coupling considered above is quite spe-
cial, and it may be hard to realize in a real physical system.
Nevertheless, it allows us to demonstrate the entire physical
phenomenon and associate the resonant reflection and trans-
missions with the excitation of particular groups of the de-
fects. In particular, by analyzing these results we make the
following statements about the nature of the Fano reso-
nances. (i) The frequencies of perfect reflections occur at the
eigenmode frequencies of the complex N-site Fano defect. In
order to find these frequencies, we should cut the coupling
between the main array and a finite subsystem of defects and
calculate a discrete spectrum of oscillatory frequencies of the
isolated complex defect. This result agrees with the earlier
results obtained for other types of time-periodic and
spatially-localized scattering potentials [20]. (ii) The fre-
quencies of perfect transmissions can be calculated by elimi-
nating one degree of freedom from the a cluster of defects, as
indicated in Fig. 1(a) and calculating the oscillatory eigen-
frequencies of the remaining chain. Because, both the perfect
reflections and perfect transmissions excite some eigenstates
of the complex defect they correspond to a resonant scatter-
ing.

As an example, we consider a simple case when the com-
plex Fano defect consists of a homogeneous chain of defects,
and the energy of all sites and couplings between them are
constant, E,,=E and V,,=V. In this case, the function p,(®)
vanishes at

c,=2Csing. (20)
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FIG. 3. (Color online) Transmission coefficient of the N-level
Fano defect with the degenerated energies E,=E for N=1,2,3.
Other parameters are C=1, V,,=1, and E=0.

mir
w,,,=E+2Vcos<—), m=1,...,l, (21)
[+1

which leads to the corresponding resonances as shown in
Fig. 3. This example shows a very interesting property of the
Fano resonances. By adding or removing one additional de-
fect we can change the transmission from zero to one for
some particular frequencies. Namely, each perfect reflection
of the I-level Fano defect with T)(w,,)=0 becomes a perfect
transmission with 7},,(w,,)=1 after adding one more defect
to the chain.

D. Additional defects in the main array

Now we study another important case that allows an ef-
fective engineering of the Fano resonance transmission. In
particular, we study the effect of an additional defect placed
in the main array. In this case, the effective equation be-
comes

PN-1 (w)

V(2)¢0 511,0’
py(w)

(22)

w0, =C(P1 + Pui1) + Eopi 0, +

where we assume that the &-like defect of the strength E is
located at the site n=1; and the complex N-level Fano defect
remains at the site n=0 [see Fig. 1(b)].

Without losing the generality, we assume that /; =0, and
present the transfer matrix M in the following form

M= MMMy,

y (b —1) Y (c —1)

“\1 o/ T°"\1 o)
b=2cosq, c=b-EyC, (23)

and m=/,—-1. By using the eigenvalue expansion, we can
show that
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FIG. 4. (Color online) Transmission coefficient of combined
Fano and &-like defects for different distances between them. Other
parameters are C=1, V(,=0.5, Ey=1, and E;=0.

—sin[mgq]

L sin[(m + 1)q]
Mo ( ~1)g)

- sin[mgq]

>, (24)

sing —sin[(m

and calculate analytically the transfer matrix M and the
transmission coefficient (16). Again, we observe that there
exist N perfect reflections at the frequencies of the eigen-
states of the N-level Fano defect, as discussed above. How-
ever, the condition for perfect transmissions becomes more
complicated.

First, we consider a single Fano defect (N=1) and study
how the transmission depends on the distance /; between two
defects. The transfer matrix (23) possesses the same singu-
larity as the transfer matrix of the single Fano defect (17),
which leads to the perfect reflection at the same resonant
frequency (see Fig. 3). Figure 4 shows clearly that, in addi-
tion to the perfect reflection, there exists a resonant transmis-
sion due to the presence of the defect in the main array. The
transmission function becomes asymmetric, and it can be de-
scribed by the generalized Fano formula. We notice here a
quite interesting behavior: the transmission coefficient alter-
nates “the sign of asymmetry,” i.e., meax< or , for even
values of /;, and wr , for odd values of l,. More-
over, the maximum of the transmissmn does not reach one in
some cases (see Fig. 4). One of the possible explanations of
this effect is that a plane wave accumulates an additional
phase shift propagating between the two defects, which leads
to the effective decoherence and, as a result, incomplete in-
terference. But this effect does not alter the perfect reflection,
and this reveals the principal difference between the resonant
reflections and the resonant transmissions associated with the
Fano resonance.

In order to show more clearly the difference between the
resonant reflection and the resonant transmission at the Fano
resonance, we consider the case when the &-defect in the
main array and the N-level Fano defect are coupled directly,
i.e., when /;=0, which leads to a generalized point defect in
the system (22). In this case, the transmission coefficient
takes the form

>(1)T
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C’py(w)’ sin® ¢

 [on-1 (@) Ve + Egpy(0) P +4C2py(w)? sin? ¢

(25)

and the condition for perfect transmissions is
pr-1(@) Vo + Egpy(w) = 0. (26)

Equation (26) is a polynomial of the order N. This means
that, in general, there exists a possibility for N frequencies of
the perfect transmissions. Such frequencies do not coincide
with the oscillatory eigenfrequencies of the (N—1)-defect
system, as discussed above (see Fig. 1), or (N+1)-defect
system (i.e., N-level Fano defect plus a single &-like defect),
as one can expect. Therefore, this means that perfect trans-
missions do not necessarily correspond to a resonant behav-
ior. In this case, the dependence of the transmission coeffi-
cient is flat and, therefore, the scattering potential is almost
transparent. The situation changes dramatically when the fre-
quency of perfect transmission is located very close to that of
perfect reflection, i.e., wr—; = wr—(. In the latter case, the per-
fect transmission becomes resonant because it corresponds to
the excitation of one of the eigenmodes of the Fano defect,
which is responsible for the resonant suppression of the
transmission. This physical picture explains how the Fano
defect can generate, almost for the same frequency, both
resonant constructive and destructive interferences creating a
sharp asymmetric profile of the transmission curves. We
would like to emphasize here again that the main feature of
the Fano resonance is a resonant reflection rather than trans-
mission, and the associated perfect transmission itself could
be or could not be resonant.

Based on the analysis presented above, we can character-
ize the resonant scattering qualitatively by monitoring the
strength of the excitation of the Fano defect. For that pur-
pose, we introduce an effective power of the N-level Fano
defect as the following norm,

N
T=2 g,
m=1

; 27

where, for simplicity, we assume V,,=V. By using the recur-
rence relation (4), we express all amplitudes ¢, in terms of

b1,

V2m—2 2
Vb)) e (28)

|
pr(w)

We use the relation (7) and employ the fact that the norm at
site n=0 for a &-like scattering potentials is proportional to
the transmission coefficient |¢y|*=T|Io|>. This allows us to
write the norm (27) in the following form:

|lol* =

pN(w)m 1 -

As an example, we consider the transmission through the
(N+1)-level &-defect, which consists of a single &-like defect
in the main array and N-level Fano defect, as shown in Fig.
1(b). We assume the equidistant energy levels of the defects,
E,=A+mE, m=0,...,3, and constant coupling, V,,=V. We
observe that inside the transmission spectrum there exist two
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Power, P

Transmission, T

FIG. 5. (Color online) Transmission through the N-level Fano
defect with N=3 and a single &-like defect in the main array for
E,,=A+mE (m=0:N) and the parameters C=1, V,,=1, A=0.5, and
E=0.5. The effective norm (29) of the Fano defect is also shown to
characterize the resonant excitation.

frequencies of the prefect transmission and two frequencies
of the perfect reflection. One perfect transmission is resonant
(at w= 1) and the other one is not (at w=~—1.5). In Fig. 5 we
plot also the norm of the Fano defect defined by Eq. (29). It
shows that the nonresonant perfect transmission does not ex-
cite the Fano defect, and it is related to a simple constructive
interference. The frequency of the other perfect transmission
is located close to that of the perfect reflection, and it corre-
sponds to a strong excitation of the Fano defect making the
perfect transmission resonant. In this case, the strengths of
the Fano defect excitation at the perfect transmission and
perfect reflection almost coincide.

III. NONLINEAR TRANSMISSION

The analytical and numerical results presented above
show that the resonant reflections associated with the Fano
resonances are robust in the regime of a local coupling. Such
reflections are observed when the frequency of the incoming
wave coincides with one of the frequencies of the oscillatory
eigenmodes of the attached defect chain. As a result, the
defects become highly excited at the frequency of the reso-
nant reflection. Such a specific resonant reflection can be
tuned externally, and below we discuss how the presence of
nonlinear defects in the discrete network may be employed
to manage and tune the response of the Fano resonances.

We consider the general case of the N-defect Fano reso-
nance and assume that one of the defects possesses a Kerr-
type nonlinear response that can contribute as an additional
nonlinear term into the system Hamiltonian,

Hy,=H; + e |*. (30)

For definiteness, we choose the first defect ¢; as nonlinear
due to its specific role in the transmission properties and
resonant reflections. Similar to the earlier studies, we expect
that the presence of such a nonlinear defect will shift the
positions of the perfect reflection depending on the intensity
of the incoming wave [18], while the perfect transmissions
will be unchanged or modified only slightly. This feature
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Transmission

FIG. 6. (Color online) Nonlinear transmission through the N
=3 defect chain with E,,=E coupled to the main array. Other pa-
rameters are C=1, V,=1, E=0, A=1, and /=1. For these param-
eters the shifts of the perfect reflections are large enough to show
the presence of bistability. The region of the bistable transmission is
indicated by the dotted line. For reference, we show the linear trans-
mission at A=0.

would allow us to achieve a simple tuning of the width of the
asymmetric Fano resonance by changing the intensity of the
incoming wave.

In the presence of the nonlinear defect, the equations of
the motion can be written as follows

w¢n = C(¢n—1 + ¢n+l) + VO@I 5n,07

M<P1=)\|<Pl|2<P1"‘Vo¢’0’ (31)
py-1(®)
and these equations are similar to the equations of the recent
paper [18] for describing the resonant transmission of a
single nonlinear defect at the Fano resonance.
Using the approach developed earlier in Ref. [18], we
obtain the result for the transmission coefficient

x2

= , 32
K +1 (32

where x is a real solution of the cubic equation
(2 + Dx-a,) - v,=0, (33)

with the parameter ,=\c;|I|*/ V. The perfect reflection (T
=0) takes place when there exists zero solution x=0 of the
cubic equation (33), and this becomes possible when «,
=—7,. As a result, the presence of nonlinearity leads to a
shift of the position of the perfect reflection in comparison
with the case of the linear transmission at a,,=0 described by
Eq. (19).

When the system allows for several perfect reflections
inside the transmission spectrum, the shift depends on the
position and the frequencies of the resonant reflections are
shifted nonuniform; see an example in Fig. 6. In contrast, the
frequencies of the perfect transmission (7=1) remains un-
changed since they correspond to the conditions x=% or a,
=, As was already mentioned in Ref. [18], nonlinear trans-
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mission may become unstable and bistable when |aq|2>3.
Therefore, near the scattering resonances bistable transmis-
sion can be observed under some conditions, as shown in the
example presented in Fig. 6.

IV. CONCLUSIONS

We have suggested an effective way to engineer the reso-
nant wave transmission and reflection in discrete networks
through the concept of the Fano resonance management. In
particular, we have analyzed the transmission properties of a
linear array of interacting elements coupled to a chain of N
side-coupled defects and found exact analytical solutions for
the transmission coefficient and the conditions for the perfect
reflections and transmissions due to either destructive or con-
structive interferences. We have demonstrated that the nature
of these reflections and transmissions can be associated with
the familiar concept of Fano resonances, and we have formu-
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lated the basic principles of the resonant scattering manage-
ment by tuning the Fano resonances. In addition, we have
presented an example of a nonlinearity-tunable Fano reso-
nance when one defect of the network possesses a nonlinear
Kerr-like response. We believe our findings and the basic
physical concepts of the N-defect transmission and reflection
will be useful for many various systems where the resonant
transmission can be characterized and described in terms of
the Fano resonances.
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